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Abstract—In this paper, we address the problem of inferring
sparse biomolecular networks from a limited number of noisy
measurements. We model the gene expression dynamics using a
system of ordinary differential equations corrupted by additive
white noise. We derive the gene interactions that maximize the
likelihood function while constraining the network to be sparse.
We consider a convex combination of three l1, l2 regularization
terms that take into account (i) the sparsity of the network,
(ii) irrelevant predictors and (iii) irrelevant responses. The last
two constraints are especially important when inferring large-
scale networks. We further propose a procedure to recover
weak interactions based on the Bayesian information criterion.
It has been shown that weak interactions are important to
preserve the structure of functional linkages among pathways.
We conduct Monte Carlo simulations to study the effect of
the model parameters and the number of measurements on
the error rate. Our simulation results show that the proposed
approach to estimate the strength of molecular interactions from
noisy measurements outperforms the l1-constrained maximum
likelihood method.

I. INTRODUCTION

Inference of genetic regulatory networks from gene and

protein expression profiles is an important problem in genomic

signal processing and systems biology as it lies at the bottle-

neck of genetic-based therapies [1], [2], [3], [4], [5], [6], [7].

Inference or reverse-engineering of the underlying genetic reg-

ulatory network can be harnessed into educated intervention of

diseases including cancer. Different models and methods have

been used in the literature to construct genetic networks from

high-throughput data, including Gaussian graphical models

[8], Boolean networks [9], Bayesian networks [10], dynamic

Bayesian networks [11] and ordinary differential equations

(ODEs) [7] [12].

Differential equation models of gene regulatory networks

are generally preferable to graphical models for numerous rea-

sons. Graphical models may be undirected (e.g., correlation-

based networks), acyclic (e.g., Bayesian networks) and cannot

distinguish between stimulative and repressive relations be-

cause they model probabilistic dependencies among variables.

On the other hand, differential equations result in model

networks that are directed, allow for feedback loops, and

categorize stimulations and inhibitions. The ability to rec-

ognize if a gene interaction is stimulative or inhibitory is

particularly crucial in understanding transcriptional regulatory

interactions and designing appropriate drug targets. Indeed,

from a pharmacological viewpoint, a drug target is either

inhibited or activated by drug molecules, e.g., small organic

molecules, antibodies, therapeutic proteins. Furthermore, ODE

models can be used to predict the behavior of the network

under different conditions, e.g., gene knockout, treatment with

an external agent, etc. However, the ODE models considered

previously in the literature are deterministic. Genomic data, on

the other hand, is very noisy and thus a meaningful estimation

method must take into account the noise in the data and

must possess a certain degree of stability for a range of noise

levels. In addition to the noise, the number of measurements

or samples is smaller than the number of genes, which makes

the system under-determined and thus not identifiable. One

strategy to obtain a meaningful formulation of the problem is

to assume a number of predictors for each gene (i.e., assume

a number of zeros for the connectivity matrix) and carry out

a least-squares estimation [13], [14]. In most practical cases,

however, no a priori knowledge is available about the true

number of predictors for each gene. This led some researchers

to resort to combinatorial approaches, where they try all

possible combinations of predictors and select the number of

zeros that corresponds to the minimum least-squares error [1].

In this paper, we model the gene interactions using a linear

ODE system [4] with an additive noise term. Following the

work in [15], we formulate the network parameter estimation

as a constrained multivariate regression problem. We reduce

the number of necessary observations by constraining the

estimation problem using a combined constraint function that

includes l1 and l2 regularization terms. The purpose of the

constraints is to impose sparsity in order to identify “master

predictors. Bimolecular networks are known to be sparse, i.e.,

a molecule (gene or protein) usually interacts with only a

small subset of the total number of molecules in the network

[4]. In addition, we impose constraints to identify irrelevant

predictors (zero columns in the connectivity matrix) and

irrelevant responses or molecules that cannot be predicted by

the considered set of molecules (zero rows in the connectivity

matrix). These two constraints are especially important to

include when estimating large-scale networks. We solve the

convex constrained regression problem using standard con-

vex optimization techniques. We further use the Bayesian

Information Criterion (BIC) to uncover weak interactions and

reduce the false negative rate. Specifically, we use the BIC to

resolve the ambiguity about weak interactions, whether they

reflect true interactions or artifacts of the imperfections in the
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data and the model. This is in contrast to the thresholding

approach adopted in the literature, where interactions below a

fixed (arbitrary) threshold are simply disregarded [13], [4], [2],

[14]. We assess the performance of the proposed algorithm

by generating synthetic biomolecular networks with various

sizes and noise levels. We use Monte-Carlo simulations to

assess the performance with respect to the effect of the tuning

parameters, the network sizes, the number of measurements

and the sparseness level of the network. Our simulation results

show that the proposed method outperforms the classical

unconstrained maximum likelihood approach.

II. GENE NETWORK MODEL

We consider a linear dynamical system in which a gene

regulatory network of N genes can be described by a linear

ordinary differential equation model of the form

dxi

dt
(tk) =

n

∑
j=1

ai jx j(tk)+ biu(tk)+ ε(tk), (1)

where i = 1, ...,N, tk = 1, ...,M and M denotes the number

of measurements or time points with M < N.
dxi
dt

is the

rate of change in the concentration of gene (mRNA) i. ai j

is the influence of gene j on gene i. u(tk) is the amount

of perturbation at time tk, bi is the effect of the external

perturbation on the gene i and ε is the error or noise term

due to imperfections in the data and the model The linearity

of the model can be justified when the system is operating in

the vicinity of its steady-state. We introduce the variable yi

yi(t) =
dxi(t)

dt
−biu(t). (2)

Equation (1) can be written in matrix form as:

yyyk = Axxxk + εεεk, (3)

where A ∈ R
N×N is the gene-gene interaction matrix. For

notation simplicity, we write xxxk to denote the N × 1 vector

xxx(tk). Writing Eq. (3) for all times k = 1, · · · ,M, we obtain

Y = AX + E, (4)

where X ∈ R
N×M = [xxx1,xxx2, ...,xxxM], Y ∈ R

N×M =
[yyy1,yyy2, ...,yyyM]t , E ∈ R

N×M = [εεε1,εεε2, ...,εεεM]. That is, every

column of Y,X and E represents a single experiment. The aim

of the network inference problem is to estimate the matrix A

given the under-determined system in (4).

We pursue a probabilistic approach and assume that the

measurement noise εεε1, · · · ,εεεM is i.i.d. N (0,σ2I) with I being

the identity matrix and σ2 represents the noise power. The

negative log likelihood function of (4) can be shown to be

given by [15]

-l(A) = Tr[
1

Mσ2
(Y −AX)(Y −AX)t]+ 2N lnσ , (5)

where Tr(X) denotes the trace of matrix X . The maximum

likelihood estimate of the connectivity matrix A is therefore

given by

Â = argmin
A

Tr[(Y −AX)(Y −AX)t ] (6)

The optimization problem in (6) has infinitely many solutions

because the system Y = AX is under-determined. In order to

obtain a meaningful estimator, we constraint the problem by

exploiting the fact that bimolecular networks are sparse.

III. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

A. The constrained maximum likelihood

Spareness is one of the important characteristics of gene

interaction networks [2]. It is known from optimization theory

that the lp norm leads to sparse solution for p ≤ 1 [16]. In

fact, the smaller p is, the sparser the solution. At the limit,

p = 0 and the l0-norm counts the number of non-zero elements.

However, it is only for p = 1 that the norm is convex and hence

computationally tractable. Moreover, an interesting result due

to Donoho and Huo [17] shows that the solution of an l1
norm optimization problem in some cases coincides with the

l0 norm. We, therefore, use the l1-norm to impose sparsity on

the elements of the matrix A. In addition, we also constrain

the sum of the l2-norms of the columns and the rows of A.

These additional constraints introduce zeros for all entries in

some columns and rows, respectively, of A, meaning that some

predictors are irrelevant for all responses and some responses

are irrelevant to the model [18]. Such constraints are especially

important to introduce when inferring large-scale networks

from high-throughput datasets, where irrelevant predictors and

responses may arise.

The constrained negative likelihood function is, therefore,

given by

f (A) = Tr[
1

Mσ2
(Y −AX)(Y −AX)t]−2N ln |σ2|

+ α
N

∑
i=1

N

∑
j=1

|ai, j|+ β
N

∑
i=1

(
N

∑
j=1

a2
i, j)

1
2

+ γ
N

∑
j=1

(
N

∑
i=1

a2
i, j)

1
2 (7)

where α ≥ 0,β ≥ 0,γ ≥ 0 and α +β + γ = 1. Observe that the

l1-norm imposes sparsity while the l2-norms are used to force

an entire column or row to be zero. The constrained maximum

likelihood of A is therefore given by

Â = argmin
A

f (A). (8)

The optimization problem in (8) is convex, and thus admits

a global solution. Moreover, it can be solved efficiently using

standard convex optimization techniques [19].

B. Recovering weak interactions

Due to the imperfections in the noise-corrupted data and the

linearity of the model, and given the sparsity constraints, some

entries in the estimated matrix A may be small. The standard

approach in the literature in this case has been to set up an

arbitrary threshold and set to zero all entries that fall below the

threshold [13], [4], [2], [14]. However, we argue that arbitrary

thresholding may lead to disregarding true interactions, thus

increasing the false negative rate, and especially leading to the
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Fig. 1. Estimation error vs. the parameters α and β for a 10×10 matrix with two zero columns corresponding to two irrelevant predictors. The combined
constraint strategy outperforms the l1-norm alone: the minimum error is obtained at α = 0.6,β = 0.3,γ = 0.1.

wrong network connectivity and hence the wrong biomolecular

dynamics. Weak molecular interactions can be physiologically

relevant. A recent study of genetic networks has established

that weak interactions are important to preserve the structure

of functional linkages among pathways [20]. Multiple gene

knockouts involved in weak interactions could thus have a

strong effect on genetic regulation and cellular functions [20].

Thus, the ability to distinguish true weak interactions from

noise artifacts cannot be overstated.

We propose to use the Bayesian Information Criterion to

achieve this goal [21]. The BIC method assesses the goodness

of a model fit penalized for the number of estimated parame-

ters. It is based, in part, on the likelihood function. The BIC

function is given by [22]

BIC = −2log p(x|k)+ k log(n), (9)

where x is the observed data, k the number of free parameters

to be estimated, p(x|k) is the probability of the observed

data given the number of parameters and n is the number of

observations or the sample size. In our framework, given the

constrained maximum likelihood estimate of the matrix A, we

consider the entries or interactions below a specified threshold.

To answer whether these entries are valid interactions or false

positives, we compute the BIC of the data and compare it

with the BIC corresponding to setting these entries to zero

in a combinatorial way. The configuration corresponding to

the smallest BIC is selected. In the Simulations Section we

describe a greedy approach in order to find the smallest BIC

matrix in an efficient manner for large-scale networks.

IV. SIMULATION RESULTS

We generate synthetic gene networks using the linear model

with additive noise in (1). We perform Monte Carlo simula-

tions to assess the performance of the proposed method with

respect to its parameters. All simulations are conducted in

MATLAB. We first consider the sparsity tuning parameters

α and β in (7) (observe that γ = 1−α −β ). Before the BIC

step, the errors are first computed according to the following

thresholding procedure [2]

E =
n

∑
i=1

n

∑
j=1

ei j, with

ei j =

{

1, if |AR,i j −AT,i j| > δ ,

0, otherwise,

(10)

where AR and AT denote, respectively, the estimated and true

connectivity matrices, and δ is a fixed threshold. Figure 1

shows the error curve as a function of the parameters α and β .

We observe that the minimum error is obtained for a value of α
between 0 and 1, namely α = 0.6 and beta = 0.3. In particular,

the combined constraints outperforms the l1 constraint alone

(which corresponds to the case, α = 1,β = 0,γ = 0). The

matrix in Fig. 1 has two zero columns, which model the case

where two genes are irrelevant predictors for the rest of the

genes. In this case, the l2-norm constraint on the columns

improves the estimation by introducing zeros for all entries

in some columns of A. Next, we investigate the effect of the

number of measurements. As expected and shown in Fig.

2, the estimation accuracy increases when the number of

measurements increases.

The interpretation of the estimation errors depends on the

threshold in (10). The common procedure adopted in the

literature is that values of the estimated matrix A that are

smaller than the threshold are set to zero. This procedure is

justified due to the presence of noise in the data. Small values

of connectivity are considered mere noise and numerical

errors. However, it has been recently argued that bimolecular

networks have weak interactions that are essential to their

functionalities [20]. Therefore, recovering such interactions

may be critical to identifying the correct topology of the

network and understanding its dynamics. The presence of

noise makes this task quite difficult because of noise overfitting
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Fig. 2. The error rate as a function of the number of measurements for different network sizes.

problems, which will increase the false positive rate. As an

example, consider the following “true” connectivity matrix






∗ 0 0.26

0 ∗ ∗

∗ 0.34 0






, where the “*”’s denote entries above

the threshold 0.5 and there are two small (but non-zero)

entries, 0.26 and 0.34, below the threshold. Assume that the

ML estimate of this matrix is given by







∗ 0.17 0.21

0.1 ∗ ∗

∗ 0.30 0.09







Following the thresholding practice in the literature, where

all values below the threshold of 0.5 are set to zero, the

optimal estimate is given by







∗ 0 0

0 ∗ ∗

∗ 0 0






. That is the two

weak interactions are mistakenly assumed to be zero; thus

increasing the false negative rate. In order to solve this issue

in the light of new developments showing the importance of

weak interactions in biological networks [20], we use the BIC

to decide whether the detected weak interactions are true in-

teractions or artifacts of the noise level. We call an interaction

weak if it falls below a specified threshold. We propose a

combinatorial procedure, where we compute the BIC of the

maximum likelihood estimate matrix and all matrices where

each combinatorial combination of weak interactions are set

to zero. For instance, assume that the ML estimate, Â, has two

weak interactions. We compute the BIC of the four matrices,

Â, Â1, Â2 and Â3, where Â1 is the ML estimate with one

of the weak interactions set to zero, Â2 sets the second weak

interaction to zero, and Â3 sets both weak interactions to zero.

The matrix corresponding to the lowest BIC is considered to

be the optimal estimate. In this procedure, all other parameters

(above the threshold) are left intact. The BIC computation is

combinatorial, and thus computationally infeasible for large

number of genes N. We, therefore, consider a greedy search

approach. We choose a configuration at random for the weak

interactions. We attempt to reduce the BIC by changing each

of the elements. This process is continued until we find a

configuration, for which no further reduction in the BIC can

be achieved. We repeat this procedure many times starting

from different initial configurations, and choose the matrix that

corresponds to the smallest BIC. Figure 3 shows the reduction

in the error rate obtained by applying the BIC procedure.

Figure 3 shows the reduction in the error rate after applying

the BIC for a 10×10 network.

V. CONCLUSION

In this paper, we tackled the problem of inferring bi-

molecular networks from an under-determined set of ordinary

differential equations, modeling the molecular interactions.

The challenges of this problem are of at least three types: First,

the data is noisy and the linear model may be inaccurate or

incomplete. Second, in large-scale inference problems, there

may be irrelevant predictors, i.e., molecules or genes that

do not contribute to the dynamics of the other molecules,

or molecules that are not predicted by the considered set

of genes. Thirdly, given the noise level in the data, we

would like to recover weak “true” interactions by reducing

the false negative rate. We solve the first issue by considering

a maximum likelihood approach that takes into account the

noise statistics. We solve the second issue by constraining the

maximum likelihood estimate using a convex combination of

three constraints, the l1-norm to impose sparsity, the sum of the

l2-norms of the columns to uncover irrelevant predictors and

the sum of the l2-norms of the rows to identify the nodes that

are not predicted by the considered set of molecules. The third

issue of recovering weak interactions is considered by applying

a combinatorial (in low-size networks) or a greedy approach

(in large size networks) Bayesian information criterion to

the constrained maximum likelihood estimate to reduce the

false negative rate due to thresholding. Our simulation results

on synthetically generated networks with varying sizes show

the improved accuracy of the proposed approach compared

to a standard l1-constrained maximum likelihood approach

followed by thresholding.
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Fig. 3. Reduction of the error after applying the Bayesian Information Criterion
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